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The Model 
 
The modelling and simulation of cardiovascular phenomena is a coupled multi-physics 
problem that consists of electrophysiology (excitation pattern in the heart), of non-linear 
elasticity (deformation of heart tissue) and of fluid dynamics (blood flow through heart 
chambers).  
 
The  is described via the bidomain equations that consist of  two PDEs electrophysiology
coupled with a system of ODEs (non-linear coupled PDE-ODE system): 
 

 

 

 

 

Here φe and Vm are the extracellular potential and transmembrane voltage respectively; ~η 
represents the ionic current variables; σ¯i and σ¯e are conductivity tensors of intracellular and 
extracellular spaces respectively; σb is the isotropic conductivity of the fluid in which the 
heart is immersed (bath and cavities); Cm is the capacitance per unit area and β is surface to 
volume ratio; iion and g model ionic currents and specify the cell membrane model. 
 
There are cheaper models as the monodomain equations or the Eikonal equation available in 
case only the arrival time of the excitation wave (=stimulation time of the heart muscles) is 
needed.   
 

couple electrophysiology with the non-linear deformation, i.e.,  Cardiac electromechanics 
the bidomain equations are extended with the elasticity equation for large deformations and 
for non-linear material laws. The deformation is governed by the equilibrium equation  

−divσ(u) = b, 

with unknown displacement field u. The stress tensor σ = σp + σa consists of a passive 
contribution σp  and an active contribution σa, while the latter depends on the normalized 
myocyte orientation.  The passive contribution requires the right Cauchy-Green tensor 
taking into account the deformation gradient and a nonlinear function Ψ describing the 
strain energy density of the specific material.  
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The full cardiovascular model requires a (FSI) and adds the Fluid-Structure interaction 
Navier-Stokes equations to the coupled system from electro mechanics including coupling 
terms at the interfaces between fluid domain and deformation domain. The fluid (blood) is 
assumed as incompressible.  

 
 

The conditions on the interface between fluid domain and deformation domain have to 
guarantee continuity of pressure and deformation via the related physical quantities. The FSI 
has to be performed on changing computational domains which requires some caution in 
the numerical realization, especially a high quality mesh deformation for the moving 
discretized computational domains. 

Discretization and numerical realization 

The overall computational framework is embedded in the Cardiac Arrhythmia Research 
Package (CARP) (G. Plank, Graz and E. Vigmond, Bordeaux) [1] where the University of Graz 
contributes with parallel solvers (G. Haase, Graz; MontBlanc3)  [2,3] and image processing 
[C. Bredies, Graz].  

The computational domain is determined a priori by image processing (registration + 
segmentation) and physiological mapping. This continuous domain is discretized by finite 
elements (tetrahedrons) that define the computational domains. We have to distinguish 
between the fluid domain, the deformation domain and the electrical domain.  

      

From images to the heart geometry (left) and an electrical excitation wave on a discretized 
heart (right). 

The finite element discretization of the PDEs uses linear elements, stable elements for 
saddle point problems and higher order elements regarding the regularity requirements on 
the solution (that is analysis of PDEs). 

Independently of the model under investigation we always have to solve a huge linear 
system of linear equations in each time step and in each step of the outer non-linear 
iteration.  Solving the (block) systems takes advantage of the sparse matrix structure and the 
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properties of the originating PDEs (symmetric?, positive definite?). The solution methods for 
the linear systems of equations are preconditioned Krylov subspace as the conjugate 
gradient (cg) or the generalized minimal residual (gmres) method with algebraic multigrid 
(AMG) as preconditioner.  

Thanks to the Mont-Blanc 3 project, we have been able to improve our solver package and 
parts of it (AMG, Jacobi smoother, Eikonal solver) with performance tools from other 
workgroups in MontBlanc3 on available and brand-new hardware as the Arm Clusters at 
BSC. 

 

High Performance Computing 

Solving the discretized (coupled) problems from above requires a lot of compute power, e.g., 
it takes 8 minutes on 16192 CPU cores (SuperMuc in Munich, Germany)  to simulate a full 
electromechanic heart beat on a realistic discretization with 45 Million tetrahedrons. The 
Implementation is usually done in C++ and uses shared memory parallelization (OpenMP, 
OpenSs) as well as distributed memory parallelization (MPI) and occasionally GPU-
parallelization (CUDA, OpenACC) [2,3]. 

      
A 4x4 domain decomposition (left) and some strong scaling results for the 

electrophysiological subproblem on SuperMuc (right). 
 

Further topics (ongoing research) 

In contrast to engineering applications, the material parameters (σ etc.) are only roughly 
known because dead tissue can be measured but behaves different than living tissue and 
experiments on beating human hearts are forbidden by themselves.  

Therefore, simulation results have to be compared to measurable data (here, the ECG at 12 
spots on the torso) and the material data will be calibrated such the computed ECG gets 
closer to the measured ECG. We follow currently several approaches for an automatic 
calibration (with reduced sets of equations) which contain  

• optimization approaches 

• deep learning approaches 

• combinations of the two. 
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Here the highly optimized Eikonal solver [4] (based on several 
simplification of the bidomain equations) is the first choice to 
calculate a fast and sufficiently accurate electrical excitation wave, 
see figure. The Arm cluster outperforms the performance of other 
hardware platforms for our Eikonal solver in terms of power 
consumption. 
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